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TORSION AND BUCKLING Ol? 0P2!N SECT IONS*

By H. Wagner and W. Pretschner

SUMMARY

I’ollowing an abstract of the well-known theory of
torsion in compression, the writers give directions for
the practical calculation of the values of CBT (resista-
nce to flexure and torsion) and ispz , which determine
the torsion.

The second part treats the experiments in support of
the theory of torsion of plain ai~d flanged angle sections.
The expe~iments are in quite close a<;reement v~ith the orig-
inal theory (omission of elastic deflection). The exist-
ing minor discrepancies are conclusively explained through
the subsequent modification of the theory (allowance for
elastic deflections). Under eccentric compressive stress-
es, long buckling struts are particularly subject to great
deformations in the median zone, which produce a change in
sectional stress distribution over the length of the mem-
ber. The scope of application of the theory is extended
to i-nclude long eccentrically compressed members bY intro-
ducing a theoretically established nean value for the load
eccentricity along length fm = 0.85 fmax.

After this extension the experiments with flanged ail-
gle sections are remarkably close to the theory. On the
other hand , since the discrepancies between the original
and. the modified theory average

]. the longest test specimens~ and

\
.\ original theory still affords a

use commends itself for general
}’,,

1i; For the plain (nonflanged)

onl~- about 10 percent for
the application of the
small safety margin, it s
purposes.

aiugle sections the original
~ theory reveal~d a much closer agreeclent than the modified

theory. But nonflanged sections form an exception among
all other sections: Their resistance to flexure and torsion

——————————————————.—__—.—.——..————.—————..—..——..—...————...———————--—————

*“Verdrehung ‘and Knickung von offenen Profilen.” Luftfahrt-
forschung, December 5, 1934, pp. 174-180.
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C-j3T, is “abnormally low. co.mpar~d. to ~he:~,o:r~$,pnal stiffness;
that is, the buckling loa& “is “almost “independent of the
length of the deformation. So “~~henthe direction of the
eccentr icity.,,isfa,vorqtle for .,themedian z~ne: of the nlem-
ber, these sections are “subject to local deformations at
the ends. .. . :., , ,,,, . .

1, INTRODUCTION
..

Open sections are members drawn or rolled from strip
which , in contra s,t.t.o the closed .(t.ubular) sections, en-
close no h,ollo.w.,space. The .fo.rmer have .a very 10Y tor-
sional stiff ne.ss.compared to the latter. Thus the tor-
sional stiffness of an .ope~ section drawn from strip whose,
cross- sectiorial warping is not prevented, is exactly as
great as that of the flat strip from which it was made.
Bvt , if tb.e warping of the cr,o,ss section is prevented,
say, at one end of the member, loilgitudinal stresses are
developed. which offer considerable resistance against
“torsion when the ‘metiber is.~elatively short...

,.
When used ‘as a colrip~b~sion member, ,such a section

fails frequently by tw.is,ting iong “oefor@ the Eulerian buck-
ling load or the yield paint, has been ’reached. This twist-
ing failure of tlliestrut ,reverts, for centrically loaded
members, to a simple sta~ilit~ problem and is similar to
the torsional instability of beams s.ubj.ected to bending.

1~, TORSION OF”OPEI?. SECTIONS WITH CROSS SECTION

RESTRAINED AGAINST WARPING

This condition is illustrated in figure” 1.. ‘It is seen
that in the twisted attitude the points at .t’heend surfaces
originally in a plane (as well as all other cross-sectional ,
surfaces) have shifted i,rom the original plane according to
the displacement t.

The difference Af between the displacement of points
1 and 2 amounts to
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where x =
.. . .,. .-.
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For an

length of section, respectively, coordinate
,in ,longitudinal direction..,.- .

angle of torsion.

v respectively, W = $?-ax dx
= angle of twist per

unit length.

+ ru Au = area enclosed by the radius vectors

from the axis of rotation to points 1 and 2
and by the “part of tile periphery” Au.

open section of any cross -sectional form which
is twisted ab~ut its axis of rotation S, it is

where I?= Z ~ ruA u, area between the radius vectors

through S and the periphery of the section. One radius
vector goes to the point, whose longitudinal displacement
(arbitrary for the present) = O, the other to the point for
which the displacement (fig. 2) is desired. When defining
the displacement for point 4 (fig. 3), the difference
l?~ - l?~ must be substituted for Y.

The displacement is proportional to 8; for S= 1,
it is called “unit displacement” and designated with the
letter w. Thus, “-

Open sections stressed in torque are subject to lon-
gitudinal stresses when clamped at one end. The I-section
shown in figure 4 is under a torque load Q h = M. The
longitudinal stresses are also shown. Their distribution
over the section is precisely as that of the displacement
produced with unrestrained torsion

Cs= proportional to w

This is readily understood when observing. that for
uniform torsion, S = constant, the section exhibits, ac-
cording to equation (1) , identically great warping in all
cross sections, i.e., that the longitudinal fibers of the
section experience no length changes. Variable & is fol-
lowed by displacements ~ varialle along the length. This

,—— -- ——— — —. —..
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induces -linear elongations in”the longitudinal fibers of
the section

or, according to (1) the stresses:

(2)

The work of form change affords the best means for
studying the relationship between the outside torque N ;
and the longitudinal stresses. The moment applied at the
tip of the beam producing angle of torsion v performs
the work +- M q), which must equal the work of the longi-
tudinal stresses or:

It is seen that thti resistance against the torsion
moment is proportional to a quantity:

1?
(3)

qllis value represents the so-called “torsion-bending con-
stant .“

Integration along x affords the relation*

(4)

( 5.)

With allowance for the temporarily disregarded ‘Saint-
Venant’,s torsional stiffness G JT, it is

M = - qda:~+(+J ‘~ ( !5)dx3 , T ~~
—.-——————..————-..——.——.—:—-.—....-—.--...-—----.—-—--————.-———--————————————————
*T~ese eauations are in strict accord” with the relations

of the theory of flexure:

P Z. = $ 0; wherely J = j ~2 d~ and

.---,,,—m..mm,—m,m-fimnm-ml--wnwn mm ■ ■ Inm 1 lmll mllla-mmmll 1111 ■ 11 ml’ 1111 II
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11,S. TWIST~NG FAILURX OT STRUTS
,..,..., ., ... ,,

When stressing a co~~pa.ratiyely thin-walled open sec-
tion, such as,.~n angle, section @ compression each indi-
vidual flange t’ends to %uckle at right angles to its plane
(fig. 5). But ,the side,,of:the flange lying at the corner
of the angle section supports itself against the other
flange which, in,view of “such. stresses, has a v:ery high
sect~.on modulus and, consequen$ly,,prevent s the %uckling of
the first flan~e’at this @oin* and vice: versa.

Thus, we have two possible forms of @ckling:
,.

1) loth””flanges buckle in the same direction - the
section is rotated as a whole by twisting (fig.
5a) ;

.2) both..flanges buckle .i.nopposite directions (fig.
5b) ●

With the latter typeo.f buckling the angle section is de-
formed? as a result of which the worlk of form change is
greater in this case.” On the other hand, of the two pos-
sible forms of buckling, the one invariably occurs first
to which the least work of form change corresponds for
equal work of the outside loads, i.e., twistiil~ of the
section. .,

*

B

3TOW we discuss ttle General case. An originally
strai&ht , ope~ section is under a sensibly eccentrically
acting compressive stress “P, whose line of action is
parallel to the strut axis. ~D=; is to denote the mean,.”
compressive stress, and Op the. assu”rnedly predetermined
resultant compressive, and bending” stress variable across
the section. The Op stressesrun”in direction of the

longitudinal fibers of the” section; that is, they slope
obliquely .to the original axis as the section 3s d:istori-
ed. Thet‘angle of inclination of a fiber due to torsion
isrc.f. Thus op r ~f is the horizontal component of
C7p; its direction. is perpen~icular to r. These stresses”

set up a momeilt’about the”center of ‘shear”amounting to

I . _-
,,

,.
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where

.,

(Ya)

.. . .’

.Por centrically acting force P, wc have ‘~p =, ~D ; that

is, Mp ~ = ~’ Op Js, with J~ = polar moment of inertia
o

of ‘profile section about the axis of shear-

Dividing tip,= 6D ~ ~B into the quota ‘of pure com-

pression and bendin& ‘stress due to” eccentricity e of the
compressive strain, we have:

,..

iSp 1S2 -t e in2=. ,,
(8)

with ~ = distance of surface particle all’.from the neu-
tral axis, and J = moment of inertia of the section;

iS~ and ‘n are sect-ion constants. ,.
.,,.

The moment, ”li~y is,” according ,to (6) “in equilibrium

with the moment of the shearing stresses, so that the dif-
ferential equation for torsion becomes:. .

(ptlt E CBT + q)? (F’ isp’ - G JT) = O ‘ (9)

The solution for the most important case, i.e., cross-
sectionalwarping not restrained at the ends, is:

,..

i= P. sin~– (V. = angle of torsion in center.)

with the,limiting conditiofi:

ql=O and CP’l=O for x=O and -x = L. ,.

Insertion in the differential equation gives the,buck-
ling load:

Pw= 12
(
GJT+ -IT’ “-—,..— ‘~ X CBT

iSp 71 )
(lo)

If the load acting on the memler is lower than the
buckling load ~iven by this equation, the member is not
distorted at all; provided there .is,no initial distortion
in t-he center.
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But if the ‘load reaches the” amount indicated, the
.— mem~er gives way suddenly under the effect of the torsion

(simple stability pro%lern) . “Onl’y”t-ho%=e.-sections having a
low value GBT/iSp2 ~ with ’respect to the moment of inertia

of the profile section (comparq equation ‘(10)) have a ten~-
ency to fail by twisting.

,/.

There is no connection between crippling (according
to Euler) and twisting for buckling struts under centri-
cal load; the section. is either,to be calculated for Eul,e-
rian, ‘“crippling load or twisting, depending on.whether the
low,~r “budkling load corresponds to one or the other of the
two phenomena.

In long, eccentrically compressed members the deflec-
tion due to eccentricity may become so great ,that the
stress distribution “in the median zone is sensibly unlike
that at the ends (iSp2 is then variable along X, ac-

cording to equation (9)). We shall refer to this again in
a subsequent section., Formula (10) is satisfactory for
most practical cases.

Yet another case is that of a member originally
slightly twisted, so as to produce in the center an ini-
tial elongation through an angle 9.. Assuming a sinu-

soidal torsioil, the angle ~ gradually increases accord-
ing to the law of

as the load increases. A gradual increase in twist occurs
equally in an originally quite straight member when, for
example , in a symmetrical profile section the compressive
force P acts outside of the plane of symmetry. SUC h
cases are discussed i.n detail in the publication printed
incidental to the twenty-fifth anniversary of the Danzig
Technical Institute,

,,
. . .. . .
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IV ● ‘“DETERMII?ATI Oli 03 T Xl. SHEAR CENTER AND :.;’,.,,., .7-.. . ... . . ..:. .:.. .‘“ ,.”, .. . ...
.:. ~THX TORSION-XE3NDIN.G CONSTANT ““. ~~~~ ~

,. ,, . :! ..’ ,.
.. ... . ........ ~.) Shear Center, : , ...”

. ..’

T.o prove t,$e.abs.ence of special difficulties involved
in determining th,~ shear center and the. torsion-bending
constant C3T, we define both hereinafter” with the aid-of

a ,sym’metrical cross section. The, rounded-off places are
replaced by identical. straigh:t ‘parts. ~ ,.,

..’.
Tor lending alout the plane of symmetry of the cross

section (as zero stress curve) the location of the result-
ant shear force is determined from, the” distribution of the
shearing. st‘resses. The change A T s’ of the shear force
Ts on a part A u of the cross section is proportional
to the distance y of the. surface elements. s A u from
the zero stress curve (fig. 6) . The proportionality fat-.
tor is arbitrarily put equal to 1, thus:

,. ATs=y:s. Au

When a straight ,piece of the profile section. is of
constant wall thi.c-kness, the shearing force per unit
length along this niece is parabolic al. i7ith known T s
at start 1 of the straight piece, the shearing force 1-S2
at point 2 and transverse force Q12 acting on piece 1:2
are:

YL + Y~
TS2= T S1+ 112 ———————

2

Q12
2

= T S1 112 +-.Z12
(

$ “Yl +~y2
)

(11)

(12)

Starting at one of the two section tips, the line of
action of the resultant transverse force is readily ob-
tained. The intersection of this line with the axis of
symmetry is the center of shear.

b) Determination of C3T

The torsion-bending constant CBT = ~Fw2 dF is found

graphically or, preferably, analytically. The ‘Iunit dis-
placementlt w varies linearly for every straight piece of

1
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the ymofile -periphery and is readily comp.u.table. , In the
‘“‘“pl.~ne .o.f-symmetry , we ..hay~ w = 0., I?igui’e“’7sho’ws ‘iv.for

the flanged section with the” corner areas ,re~lacs~-.-by-.“-,,.
straight lines.

., ,:,., .
Wijih the notati~,ns .oi..figur,e,,,7, “it i.s: . ‘, ,

,.. .. . . . ..’...

C3T = f -ivzCi2= z,,s.J” (WL + a XV d.x= “:. :

~“ S ~.’~Wi2, + W~ a 2 “* ~(aZ).2~ “,(13),
. .

or, after conversion con formal, to at=w2-wl (fig, 7):

It can be proved* that w consists of two parts:
~=~~+~n, heretofore expressed with w = Wu and , ac-

cordingly, CBTU ~ C3T , because ~n is of secondary sig-

nificance with ‘the conventional thin-walled structures em-
ployed in,airplane design. Thus, aside from the, calculat-
ed C3T > CBTU there is yet CBTn s which may be expressed

wit’h a simple integral . With the notations of figure 8,
it is:

(15)

V’. 2XFERIEEITTAL RESULTS

a) Test Samples

I
\
k To check tile theoretical ioads for twisting failure,

we. made a. nuinber”of buckling tests on open compression
j mem’hers . The results show a very close agreement with the
i ca,.lculati.on. In order to obtain a clear picture of the
/ effect of each quantity appearirlg in

.
(lo)

————.-————.-————————___ ———.-—- .-__. -—-. ——.. —.——. —————————————————_——

*25t”h ani~iver~ary. number of -the Danzig Technical Insti-
tute, p. 331.

**See equation (10) , warping g~~ restrained:
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,., .. .. . . . ..
ttio profile s,ections.~; drawn dural “s’trip of equal cro ss- \
sectional area ‘(F =,095”6 crn~) and’ shank. ‘length (2.9 cm)
were chosen (fig:. 9) .

The buckling loads were, de,termined through experiments ~
with three different l~n~ths” (1 = 18.6; 1 = 38.6; and
t = 58.6 cm) ,with respect to the eccentricity of the load
applied at tlie plane of ‘syrnmetry~

!. The profile constants computed from exact measurements
are given in the following:

TABLE I

______.__._—__..__—_———._——__.Q——____

_. ——.:..L—. .- —— —.. -— .-—.. .——. -—— — .— —--- —— .. . . .

Cross- secti-bnal” area

Wall thickness

Length of developed “section

Distance of center of ~ravity

Distance of shear center

iioment of inertia about a::is x

Uov.ent of inertia about, axis y

Polar moment of iilertia about
shear center

Torsion-’ben(liilg constant

Constant ,.,

Consta”nt .. .

Modulus of elasticity
“.

Torsional stiffness

———.-————.-———-... —---------- ..——..- —--——.——..

———.—

lTota-
tion

,———.-—
F

s

b

Xs

‘S.ch

Jx

Jy

3P

CBT

%2

‘n

FJ

G JT

.—.—— ..—

.

.-- —-.—

)imen-
s,ion
———.-——

cm2

cm”

cm

cm

cm

cm4

cm4

cm4

cm~

Cu.n

cm

kg/ cm2

~g/cm2

-—...-_.——

-—-.—— ———-———-———

Section shape
<

-—-.-————
0.565

.085

6.64

.1.228

.137

.955

.275

2.273

.060

4.02

4.44

<
————

2.566

* 10

5.66

1.10

.0326

.885

.198

1.700

.0016

3.00

4v~()
I

740000 ~740000 .

I
400 I 405

>
——--————-— ------.---—

cr. X 0.3937 = in. ; c,ma,X 0,1550. = sq~in~; kg/cm2 X

14.2235 = 11. /sq. in.
., ,.
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. .’. “b)’”Te”st Arrangement ~~ ~~~
. ,’. ,, ...,. .,.
The loading machine” “empl”oi~d’-irithe’ tests is’illus- -

t“rated in figure 10. ,..’. ,. ... .’.’

The bar (a) is compressed bet We@ two setd of crossed
knife” edges: (~)’. Tk:e load: is” afiplied at the” end” of a
lever by m~ans of %“bights’(d) ,.““The buckling” load was de-
termined with’ an acc”lma-cy’of +0~3- kg. ~~“~~

.. . .,..:. ., ,.,
,,” T“h’ee ccentricity of the..compressitie 10ENI was det er-

mined through measuring the d.ef,leciion. during the Loading
and the initial eccentricity was derived therefrom- This
removed the unavo.id.able er:ro’rs .inci.”dentto’ d’irect det er-
minat ion of initial eccentricity and the effect of any
initial deformation.

The deflection, measured with a solid rod (f) on two
,knife edges and micrometer screw (m) , was accurate to
within +0 .02’ mm. “.

“The modulus ‘Of .qla,st’ic.ityand the torsional stiffness
were determined from careful tension and “tors ion tests.

.,

c) Centrically Compressed Members

~w . –_Lz )(GJT+y~ECBT
i Sp

,.
i SP2 =,; ~ r2 dl?= constant = iS2 ,.: (lOa)

.,,

For this case figures 11 and 12 show, aside from the
,torsion loads (stresses), ‘the Euler curves for both sec-

i tions with respect to length and, slenderness ratio. The

~ respective proportion of G JT,. and CBT to the quantity
j
~, of the torsion load is also included.

,,
‘1 ,.” .,
,~2

.Both ‘sections have exceeded th~ stability limit with

~
regard to torsion stres”s long before the Eu.lerian load is
reached. The short bar of flanged section is appreciably

m1) superior to the angle section because of its high CBT ,

but as the. lengt>” increases “the effect of. C:BT ~ec,ornes
....

small compare,d, to, “G JT. For: “long bars., the torsional,
stiffness. practically Co.vern.s tile t o,rsion” load!. and for
this reason the angle section is superior to the flanged
section,——— ———..——— —-_——..--..——— —...——.——— ——— —- ———..——— ——— ——— ——— ——— ——— ——— —
kg X 2.20462 = lb, ; ,mm X 0.0393’7 = i:a.. ,.
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The measured torsion loads are shown as points. Up
to the result for angle section of t = 18.6 cm the test
data (of very-close accuracy for buckling tests) are in
accord with the calculation-

The discrepancy in this case (t = “18.6 cm) may be
attributed to the restraint of the end cross sections
against warping through Wn.. (See footnote (*), p. 9.)
Allowing for this fact the. results are as shown by the
dot-dash curves of figure 12. (With complete restraint of
the end cross sections against warping the value of C3T
is four times as high.)

d) Eccentrically Compressed Members

(lOb)

The results are illustrated in figures 13 to 18. Ec-
centricity from the center of gravity toward the hack of
the section is figured negative. !!he ratio of effective
torsion load F: to the torsion load Pwo of the ten- ‘ ““

trically compressed bar chosen as criterion affords a ~flore
comprehensive comparison-

These curves reveal the intimate relationship between
torsion load and load eccentricity, If the load acts in
the victnity of the shear center the torsion load finally
becomes infinitely great. With Pw-+ infinite, i.e,,

iSp2e O (compare also equation (8)), the corresponding

eccentricity is, according to (10):

is2

e = - :—– (1s)

P +m %

The dashed theoretical curves are computed for assumedly
constant stress distribution. (See fig. 19; Op = QD + as
is constant in every section over the whole length of the /
member. )

But under eccentric stress the strut deflects {column
effect); thus the eccentricity, and consequently, the stres( .
distribution over the length of the bar becomes variable
(fig, 20). Taking into consideration the thus-obtained
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.. . , .,. .’.,.

exact stress distribution (considerable paper work involved)
the full lines: represent. the torsion”’ loads,*.... ... . . ... .: ,, ,..,.,,., ....... .
.,,. It is” seen thatallrnajofi dis.crepanbies” ’(from 10b)are
practically ‘confinetl .to:long’%&rs:and to’ the range of nege
ative eccentricity, so that as a general ru]le this simple
calcu”lati’on is” c.1.os:e”enoughfo~ ‘estimations”?,,.,,.,. ,’,. ,.,....’ .. .

.W,h”eni..in.~mg:,sec.t,i,o.n.s,,.:.the f.or.ceacts in the viciiw
ityo.f,,the corner, the. deflection, ip,.the.center causes
the line. of .ac,tionin ,t’hemedian part of “the section to:’
sh,ift“more toward ‘the .corner~’ Ths, result ii!“a #’t’rO,ss‘d”~,s-
i’r;i?mtion in the ‘center: su”ch as to void the” question of””
twisting ‘at t’ki””s’po’’int. (See’ e~uation (16)’.’) Thus it” hap-
pens in the test that the section first; fias “a’ten’dency to
twist , but retur~s to its median position as the load in-
creases;” “that”’is., the deflection in the “ten’terincreases
and then breaks in a different man-ner. ,(Se”e fig. 18, at
e = - 4.0 mm. ) I“nplain “(nonflanged) sections, the in-
creased value of the torsion load does not conform to the
beneficial eccentricity in the lar center, but rather to
the form as illustrated in figure 213, wh&’re ‘the t“orsion
‘load corresponds to the eccentricity at the ends. Thus
the test samples of the angle sections of ‘length T = 58*6
cm, excepting e = - 4.0 mm, twisted according to figure
21b; all others according to figure 21a. The latter form
does not appear when the section is flanged as, owing to
the shorter buckling length in this case, resulting from
the high CBT , the buckling load would be considerably

higher. (Compare the effect of Z in equation (10).)

Numerically the experiments are in quite close accord
with the theoretical results.

———————————————————-_____-.— ----- .—_—_—————————————————————————

*Note: Let fmax be the maximum deflection of the bar,

I Then the additional stress distributed sinusoidally over

I

the bar length may be replaced by a constant distribution
\ b aving the same work of deformation if the additional

II
eccentricity equals 0.85 fmax, and the calculation is re-

duced to case a)

1“

If 0.85 fmax = n, then (according to H{tte, vol,
.-> I (25th edition), p, 645:
/,
/ GJT+~~ E CBT
“, n= ––~~~–”- -1-0.15 and” Pw = —--— ————x——

I-T

r
, 2– ‘s2-i-ienCos ~ PE

T

It is best to resolve this equation graphicallyp~y comput-
ing Pw/F for any P and defining Pw from –_ = 1.

P
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. ...”. . . . . . . ,.

AS concerq.s the discrep’ancie”si.we “note: The ~iscrep-
ancies occurring in the ‘test with the short angle section
(fig. 16). are .- “as for centrically loaded sections -. a rem
suit of cross-sectional “luckli”n& unavoidable in the .test-. .

Owing to .inaccuracies. in preparation, the profile
surfaces assumed as flat in the calculation of CBT were

actually sli-gjhtlycurved. The result was that the actual

CBT were slightly higher than “those used in the calcula-”

t,ion, which explains ,the Slightly higher torsion load shown
for all short sections (f,tgs.””11’and 12). This is’part,ic-,.
ularly noticeable on “the ang”le .s,ect ions lecause of their’.,
inherently 10W CBT,,,values. ~

.
The mathematical “deflections in the strut center are

plotted for torsion load versus eccentricity and are in
close a’greetient witli the measured values,

Translation by J: Vanier,
,,

National Advisory Committee
for Aerotiautics.
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Figure 1.. Distorted I-beem.

Figure 5.- Types of
buckling

Q3 &o
f

Figures 2,3.. Formation of the
displacements.

(

Figure 4.- Formation of longitudinal
stresses with restraint

of the end cross-sectionagainst
War@ng.

\,.,/

Figure 6.. Sheaxing stresses due to
transverse force through
shear center.
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Figure 7.- Variation of the
unit displacement.

‘1

l?i&wre9.- Dimensions of exsmined
eections.

t _,.._ _-—.— .- .’ “-—

Figure lG.- Loading machine.

, , .- ,. . . .....— .—-—,, -. —,—.,,-- . .. . . ., . .,..—

Figs. 7,8,9,10,19,20,21

‘center

Figwre 8.- lkfinition “of~Tn

P

Figures 19,20.- Modified and actual
stress distribution

in eccentric compression.

U--.=,0

a b

Figure 21.- Forms of torsion
of open sections.
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Figure 11. Figure 12.

Figures 11,12.- Torsion loads in centrical compression.

Figure 13. Figure 14.

Fi~es 13,14.- Ratio of torsion loads in eccentric to CeIItriC COwreSSiOh
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Figures 15,16,17,18.-Ratio of torsion loads in eccentric
to centric compression.
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